
Machine-Learning-Based Olfactometer: Prediction of Odor
Perception from Physicochemical Features of Odorant Molecules
Liang Shang,† Chuanjun Liu,†,§ Yoichi Tomiura,‡ and Kenshi Hayashi*,†

†Department of Electronics, Graduate School of Information Science and Electrical Engineering, and ‡Department of Informatics,
Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
§Research Laboratory, U.S.E. Company, Limited, Tokyo 150-0013, Japan

*S Supporting Information

ABSTRACT: Gas chromatography/olfactometry (GC/O) has
been used in various fields as a valuable method to identify
odor-active components from a complex mixture. Since human
assessors are employed as detectors to obtain the olfactory
perception of separated odorants, the GC/O technique is
limited by its subjectivity, variability, and high cost of the
trained panelists. Here, we present a proof-of-concept model
by which odor information can be obtained by machine-
learning-based prediction from molecular parameters (MPs) of
odorant molecules. The odor prediction models were
established using a database of flavors and fragrances including
1026 odorants and corresponding verbal odor descriptors
(ODs). Physicochemical parameters of the odorant molecules
were acquired by use of molecular calculation software
(DRAGON). Ten representative ODs were selected to build the prediction models based on their high frequency of
occurrence in the database. The features of the MPs were extracted via either unsupervised (principal component analysis) or
supervised (Boruta, BR) approaches and then used as input to calibrate machine-learning models. Predictions were performed by
various machine-learning approaches such as support vector machine (SVM), random forest, and extreme learning machine. All
models were optimized via parameter tuning and their prediction accuracies were compared. A SVM model combined with
feature extraction by BR-C (confirmed only) was found to afford the best results with an accuracy of 97.08%. Validation of the
models was verified by using the GC/O data of an apple sample for comparison between the predicted and measured results. The
prediction models can be used as an auxiliary tool in the existing GC/O by suggesting possible OD candidates to the panelists
and thus helping to give more objective and correct judgment. In addition, a machine-based GC/O in which the panelist is no
longer needed might be expected after further development of the proposed odor prediction technique.

Gas chromatography/olfactometry (GC/O) has been
developed as a powerful tool in the field of odor research

because of the coupled performance of gas chromatographic
analysis with human panelist sensory detection.1,2 GC/O can
work not only as an instrumental analysis to identify and
quantify complex odor mixtures but also as a sensory analysis to
assess odor or odor-active compounds within the GC effluents.3

In GC/O analysis, the eluted substances are perceived
simultaneously by two detection systems; one is a mass
spectrometry (MS) system and the other is the human
olfactory system.4,5 Evaluation by a human sniffer plays an
important role because it can make up for deficiencies of GC
(or GC/MS) in odor analysis.6 For example, many of the peaks
detected by GC for an odor mixture may not actually
contribute to our perception since they are present below our
thresholds for detecting them. Conversely, some compounds
may not show up as detectable GC peaks but may have a low
perception threshold and contribute substantially to a sample’s
profile. The sensory evaluation of smells by trained panelists

can overcome such problems and represents a valid approach to
odor assessment. Through sniffing GC effluent components,
panelists can determine the odor characteristics ascribed to
each individual component, which is important information for
the overall odor analysis.7

A major problem of GC/O is the subjectivity of assessors at
the intra- and inter-individual level. Sensory assessment of
smells by panelists is influenced by many factors, such as the
testing environment, experimental bias, assessor sensitivity,
assessor selection, and training.8 Experimental conditions
should be well-established to ensure accuracy and precision
of the odor descriptor data collected by the panelist. Therefore,
although GC/O has presented many challenges not considered
in typical GC analysis, its application and promotion are
hindered by the variability, high technical requirements, and
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high costs of the trained panelist.9−11 Some software modules
have been designed and applied in GC/O as a supplement to
odor and chemical analysis. For example, AroChemBase (Alpha
MOS) constitutes the most comprehensive chemical and
sensory library ever, which is convenient for fast sensory
profiling and detailed chemical/odor characterization. In this
kind of software module, however, the number of compounds
with odor descriptors (around 2000) is far less than that of the
total compound pool (around 44 000). Therefore, regardless of
human assessment or software indexing, the question of how to
effectively obtain sensory information for eluted compounds
from GC is still unanswered for GC/O.
Recently, there has been growing interest in the prediction of

the structure−odor relationship by use of various parameters of
odorant molecules, such as structural, topological, geometrical,
electronic, and physicochemical.12 The driving force of this
research might come from the great progress made by Buck and
co-workers13 and Axel and co-workers14 through their
discoveries of olfactory receptors and the organization of the
olfactory system. It has been revealed that odorants with similar
features in molecular profile show similar activity patterns in
the olfactory bulb (also referred to as the odor map).15,16 Great
efforts have been made in odor classification from different
aspects such as semantic classifications, olfactory descriptors,
odor similarities, statistical analysis, and olfactory profiles.17−21

Although it is still difficult to establish a general rule to predict
the olfactory perception of odorants, a number of computa-
tional techniques have been used successfully in the explanation
of both physicochemical and perceptual spaces of odorant
molecules. For example, Sobel and co-workers22 related these
two spaces to each other and find that the primary axis of
perception (defined as odor pleasantness), reflects the primary
axis of physicochemical features. Kumar et al.23 developed a
network-based approach (smell network) that can be used to
explore the perceptual universe and prove the underlying
similarity of percepts. Keller et al.24 established a machine-
learning algorithm using a large olfactory psychophysical data
set, which can be used to predict odor intensity, pleasantness,
and semantic descriptors from chemical features of odor
molecules. These developments demonstrate that it becomes
realistic to predict olfactory perception from structural
parameters of odorant molecules. Additionally, the develop-
ment of data analysis techniques and cheminformatics software
make it possible to deal with the complexity of odor spaces that
have high dimensionality and nonlinearity, which would also be
applied in many fields such as food and fragrance
evaluation.25−27

However, to our knowledge no study has applied the odor
prediction models in GC/O. In this proof-of-concept study, we
test the possibility that a machine-learning-based prediction
model could be used to replace the human panelist in GC/O.
As illustrated in Figure 1, after the GC effluent is identified by
mass spectrometry, its molecular parameters (MPs) can be
transferred by a cheminformatics software and inputted into a
classifier system in which each classifier is labeled by a specific
odor descriptor (OD) (a word like sweet, green, fruity,
herbaceous, etc.). After the true or false classification, the
system can output the sensory information on the GC effluent,
which may consist of single OD (such as sweet) or multiple
ODs (such as sweet and green). These ODs predicted by these
models would be regarded as references for odor sensory
information evolution.

A flavor and fragrance database (Sigma−Aldrich, 2016) that
includes 1026 odorants and 10 ODs was considered in this
study. The physicochemical MPs were acquired via chem-
informatics software. The features of the MPs were extracted
via either unsupervised (principal component analysis, PCA) or
supervised (Boruta, BR) approaches. Ten typical ODs with
high frequency of occurrence in the database were selected to
establish the models. Different machine-learning algorithms,
including support vector machine (SVM), random forest (RF),
and extreme learning machine (ELM), were used and their
prediction results were compared. Finally, Golden Delicious
apple GC/MS data were employed to prove the feasibility of
the model calibrated in present study. A Boruta-SVM model
showed high accuracy in OD prediction, which indicates the
possibility for machine-learning based GC/O.

■ MATERIALS AND METHODS
Odor Data Collection. Simplified molecular input line

entry specification (SMILES) was obtained by both semi-
automatic and manual methods from PubChem (https://
pubchem.ncbi.nlm.nih.gov) according to the CAS number of
the odorant molecules recorded in the Flavors and Fragrances
database.28 The SMILES strings were imported into the
Dragon chemoinformation software (version 7.0, Kode, Italy)
to compute the physicochemical parameters. The calculation
afforded 5270 parameters with various values for each odorant
molecule. It was found that most of parameters (around 4200)
were assigned as not applicable (NA). We removed these
parameters with NA and finally got a parameter matrix with
1006 MPs. All MPs were normalized and centered for further
processing.

Data Analysis. The data analysis process is shown in Figure
2. The data set for odor prediction is a typical imbalanced data
set because the class distribution of positive samples (minor
samples with specified OD labels) and negative samples (major
samples with nonspecified OD labels) is not uniform. Here,
synthetic minority oversampling technique (SMOTE) was
employed to overcome the imbalance problem.29 The minority
class was oversampled at 300% of its original size and the
majority class was undersampled to obtain a balanced data set.
Afterward, the sample pool was divided into training and test
sets with a 3:1 ratio by use of the Kennard−Stone (KS)
algorithm.30,31 Sample size details for each OD are listed in
Table 1. The unsupervised feature combination method (PCA)
and supervised feature selection method (Boruta) were
performed to extract kernel information to enhance the

Figure 1. Concept diagram to predict odor descriptors by using
molecular parameters.
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performance of the classification frameworks.32,33 SVM, RF,
and ELM classification algorithms were applied to predict ODs.
The optimal model was determined by considering the
accuracies of the training and test sets. As the last step, the
F1 score based on precision and recall was used to verify the
performance of the optimal model.34

Model Validation. For validation of the OD prediction
models developed in the present study, volatile compounds
identified from actual samples were analyzed were employed.
Arvisenet et al.35 studied primary volatile organic compounds
(VOCs) from Golden Delicious apples by solid-phase micro-
extraction (SPME) and GC/MS analysis. Their results
indicated that 30 compounds, including 13 esters, nine
alcohols, five aldehydes, one ketone, one phenol, and (E,E)-
α-farnesene, would be considered as primary. Based on the
MPs calculated by Dragon 7.0, the optimal model (BR-C-SVM)
calibrated in the present study was applied for predicting their
ODs. Compared with the ODs reported in other papers or
databases, the OD prediction models developed in this study
would be evaluated.

■ RESULTS AND DISCUSSION
Odor Descriptors. It is well-known that, for machine

learning, the larger the sample size is, the higher the model
accuracy tends to be. For odor prediction, an optimum database
should have an appropriate number of odorant molecules and
ODs. Up to now, there are a number of odor databases that
have been reported and analyzed.36 Recently, Kumar et al.23

carried out a comprehensive statistical analysis of five main
odor databases: Flavornet, GoodScents, Leon & Johnson,
Sigma−Aldrich, and SuperScent. One problem with these
databases is the sparseness of the data distribution, because an
odorant molecule can be described by a varying number of
ODs, but very few molecules are described by a large number of
ODs in the databases. The statistical results of Kumar et al.23

indicate that the Sigma−Aldrich database possesses both a
relatively larger number of odorant molecules and larger
average number of ODs per molecule, and thus it leads to the
highest average occurrence of ODs. In view of this character-
istic, the Flavors and Fragrances database of Sigma−Aldrich
(2016), which has been upgraded to 1026 odorant molecules
and 160 ODs, was adopted and analyzed in the present study.

Detailed information about the 160 ODs is listed in Table S1.
Figure 3 summarizes the 20 ODs that occurred most frequently

in the database. The descriptor sweet is represented by
approximately 200 odorants, while the descriptor rose is
represented by approximately 50 odorants. Considering that a
badly calibrated model could result from insufficient sampling,
only the top 10 ODs were used to establish our prediction
models. The 10 descriptors were sweet, green, fruity, floral,
meaty, winelike, apply, fatty, woody, and herbaceous. The
minimum number of samples (herbaceous) is over 70. This
sample size may help ensure accuracy of the prediction models.

Feature Extraction. As machine learning aims to deal with
larger, more complex questions, the extraction of relevant
features for data representation data is a critical problem within
model calibration.37 It has been reported that machine-learning
algorithms exhibit a decrease in accuracy when the number of
variables is significantly higher than an optimal number.38

Consequently, before model calibration, PCA and BR were
employed as unsupervised and supervised methods, separately,
to extract features from all the MPs, and their effects were
evaluated.
PCA was first performed to remove redundant information

(Figure S1). To avoid loss of characteristic information from
the original data set, PCs with accumulative contributions of
99.99% were selected. Table 1 lists the number of PCs for 10
ODs. BR was used to find useful features of each OD. By BR,
1006 MPs were labeled as confirmed, tentative, or rejected
(Table 1). In this research, MPs labeled confirmed or tentative
(BR-CT), and labeled confirmed only (BR-C) were used in
further processing. Features selected by BR for the 10 ODs are
shown in Figure 4. This illustrates that although an MP may be
labeled as confirmed for one OD, the MP could be regarded as
a useless feature for other ODs. This indicates that ODs could
be used to describe various dimensions for an odorant. It can be
interpreted that some MPs are associated with some appointed
functional groups of a molecule, and functional groups are
related to ODs.

Random Forest Model. To calibrate RF models, two
parameters, the number of trees (ntree) and the number of
features (mtry), need to be optimized. Although adding more
trees will not cause overfitting, it will increase the model
complexity. Therefore, a sufficient number of trees was needed

Figure 2. Data processing diagram of prediction model calibration and
validation. Figure 3. Twenty most frequent ODs in Sigma−Aldrich database.

Given the sample size for model calibration, the first 10 odor
descriptors were considered in this study.
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to calibrate RF models. With the out-of-bag error and test error
taken into consideration, the optimal ntree and mtry were
determined (Figures S3 and S4). The optimal modeling
parameters for the RF models are listed in Table 2. The
overall accuracies of the best RF models under all parameters
(AP), PCA, BR-CT, and BR-C data sets are shown in Figure 5.
In summary, the PCA RF model showed a better average
accuracy (92.79% ± 1.63%) than the AP (90.62% ± 1.26%),
BR-CT (90.50% ± 1.21%), and BR-C (90.61% ± 1.85%) RF
models.

Extreme Learning Machine Model. For ELM models, the
parameter that needs to be tuned is the number of hidden layer
nodes. In this study, the parameter was obtained by a trial and
error method. The range of number of hidden nodes was set
from 1 to 800. To avoid the randomness of ELM models, each
ELM model was repeated 200 times and the average accuracy
was employed to finish the parameter’s selection (Figure S5).
On the basis of highest average accuracies of calibration set and
validation set, the optimal parameter was determined. Selected
results are provided in Table 2. The OD identification
accuracies for the training and test sets of ELM are shown in

Table 1. Data Sets, Division of Samples, Principal Components, and Molecular Parametersa

original data set
SMOTE processed data

set
division of samples

by KSb MPs labeled by BR methodc

odor descriptor P sample N sample N:P P sample N sample train set test set no. of PCs confirmed tentative rejected

sweet 198 828 4.18:1 792 891 1262 421 260 180 206 620
green 192 834 4.34:1 768 864 1224 408 267 263 211 532
fruity 133 893 6.71:1 532 598 847 283 238 214 205 587
floral 81 945 11.67:1 324 364 516 172 201 118 136 752
meaty 80 946 11.83:1 320 360 510 170 201 141 208 657
winelike 81 945 11.67:1 324 364 516 172 200 95 126 785
apple 76 950 12.50:1 304 342 484 162 188 133 109 764
fatty 75 951 12.68:1 300 337 477 160 199 116 155 735
woody 74 952 12.86:1 296 333 471 158 189 129 132 745
herbaceous 72 954 13.25:1 288 324 459 153 188 122 177 707

aOriginal and synthetic minority oversampling technique (SMOTE)-processed data sets are described. P (positive sample) indicates the number of
samples with the specific OD label. N (negative sample) indicates the number of samples with the nonspecific OD label. bDivided by use of the
Kennard−Stone (KS) algorithm, cMolecular parameters labeled by the Boruta method.

Figure 4. MPs selection based on BR method for the ten ODs. One thousand six MPs were arranged as a matrix (36 × 28). Each grid indicated one
MP. MPs labeled as rejected, tentative, or confirmed were colored. Here, the features labeled tentative and confirmed (BR-CT) and only labeled
confirmed (BR-C) were used for calibrating models. The number of MPs for each label is listed in Table 1.
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Figure 5, which shows that the accuracy of PCA ELM model
(97.53% ± 1.35%) is higher than those of AP (94.13% ±
1.44%), BR-CT (94.02% ± 1.59%), and BR-C (91.78% ±
1.91%) ELM models.

Model Comparison. The average accuracies of the training
and test sets for ODs are shown in Figure 5. For green, fruity,
winelike, apple, and herbaceous identification, BR-C-SVM
shows better results than other models. However, PCA ELM
did a better job identifying the sweet and meaty ODs. When
the tree modeling methods were compared (Figure 6), it was
found that ELM had the best identification accuracy (97.53% ±
1.35%), followed by SVM (97.19% ± 0.93%), and RF (92.79%
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Figure 5. Identification average accuracies of train and test sets for 10
odor descriptors by SVM, RF, and ELM.

Figure 6. Comparison of average identification accuracies by SVM,
RF, and ELM models under all parameters (AP), features extracted by
PCA, BR-CT (confirmed or tentative) or BR-C (confirmed only).
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± 1.63%). Dealing with large variables slows down machine-
learning algorithms and requires more resources.39 Here, PCA
and BR were employed to extract kernel information from a
large feature set. The results show that PCA did a better job
than Boruta in the RF and ELM models. However, PCA is an
unsupervised feature combination method; the PCs are
computed on the basis of the original data set. When the
amount of input information is considered, BR is more suitable
for feature extraction from MPs. It was confirmed that training
time increases with the number of features. Here, by the BR-C
method, only 15.01% information was extracted instead of all
MPs. Therefore, when the accuracies and modeling time are
considered comprehensively, it is suggested that SVM
combined with features extracted by BR-C, whose average
accuracy was higher than 96.10% ± 2.8%, is the optimal model
in identifying perceptual descriptors based on MPs. Besides, the
recall, precision, and F1 score of BR-C SVM were 94.83% ±
5.61%, 86.88% ± 3.04%, and 95.74% ± 3.52%, respectively,
which yields a model with acceptable generalization ability to
predict odor descriptors based on physicochemical parameters.
Model Validation. Thirty primary VOCs, identified from

Golden Delicious apples analyzed by GC/MS, and their ODs,
from databases and predicted by the models in this study, are
summarized in Table 3, which indicates that 70% (21/30) of
compounds were predicted accurately. The other seven
compounds were shown to be unpredictable, which can be
explained by the insufficient number of OD models calibrated
in presented research. Some ODs, such as peanut and balsamic,
were not considered in the present study because of their
smaller samples. Although 70% would not be enough to use the
model instead of panelists for GC/O, the ODs predicted by
models can apply references for the panelists to enhance their
work efficiency. Additionally, the predicted accuracy would be
increased by consideration of more odorant samples and
establishment of enough OD models.
Possibility of Machine-Learning-Based Gas Chroma-

tography/Olfactometry. This paper reported a proof-of-
concept study aimed at testing the feasibility of machine-
learning-based GC/O. In this study, 10 ODs were tested due to
their relatively larger sample size and higher occurrence
frequency in the selected database. A SVM model combined
with feature extraction by BR-C showed high accuracy in the
prediction of these ODs from the MPs of odorant molecules.
Although 10 descriptors are obviously not enough for a
practical application, the results of this study demonstrate the
possibility that a machine-learning approach can be used to
obtain sensory information on GC effluents. Additionally, more
models for ODs would be expected if sufficient samples can be
acquired. About 3000 odorants with odor types were reported
in existing databases include Flavornet, GoodScents and
SuperScent. In future work, in order to extend the prediction
models to more ODs, more odorants with OD information
would be collected and a summarized odor database would be
established. In fact, the number of prediction models actually
needed in a GC/O system may be not as many as expected. A
recent study suggested that the dimensionality of odor percepts
may be around 20 or less, although the human nose has 400
olfactory receptors.40 This may mean that 20 or fewer
descriptors are enough for their application in GC/O. As
shown in Table 3, multiple ODs can be predicted for one
compound. These ODs can be used as reference for panelists to
obtain a relatively credible odor evaluation, which can enhance
their work efficiency and accuracy. In future, a reliable enough

model system would be established to rely on adequate samples
instead of panelists for odor type evaluation. In conclusion, the
prediction model combined with descriptor indexing may be a
good candidate to replace the human panelist in GC/O.

■ CONCLUSIONS
The contribution of this study is to present an approach to
predict odor perceptions on the basis of physicochemical
descriptors. After processing by the SMOTE and KS methods
for balancing data set and subset partitioning, two feature

Table 3. Model Validation by Golden Delicious Apple
Samplea

no.
volatile organic
compound

odor descriptor from
databaseb

predicted odor
descriptor

1 2-propanol alcohol, butter
2 1-propanol alcohol, apple, musty, earthy,

peanut, pear, sweet
apple

3 1-butanal apple, chocolate, creamy,
green, meaty, ethereal

green, fruity

4 ethyl acetate solventlike, fruity, anise,
ethereal, pineapple

5 2-methyl-1-
propanol

fruity, whiskey, winelike,
solventlike

fruity, winelike

6 1-butanol banana, vanilla, fruity
7 propyl acetate fruity, floral fruity
8 2-methyl-1-

butanol
onion, malty

9 1-pentanol sweet, vanilla, balsamic
10 isobutyl acetate apple, banana, ethereal, pear,

pineapple
apple

11 1-hexanal fatty, green green, fatty
12 butyl acetate banana, green, sweet green
13 (E)-2-hexen-1-

al
almond, apple, green,
vegetable

green, apple, fatty

14 1-hexanol green, herbaceous, woody green, fatty, woody,
herbaceous

15 2-methyl-1-
butyl acetate

banana, peanut, fruity,
applelike

16 butyl
propanoate

banana, ethereal apple

17 amyl acetate fruity, banana, earthy,
ethereal

fruity, apple

18 (E)-2-hepten-
1-al

fruity, rose, fatty, almondlike green, fruity, apple,
fatty

19 6-methyl-5-
hexen-2-one

fruity, citruslike, strawberry

20 butyl butanoate apple, banana, berry, peach,
pear

apple

21 hexyl acetate apple, banana, cherry apple, fatty
22 2-ethyl-1-

hexanol
oily, rose, sweet woody, herbaceous

23 butyl 2-methyl
butanoate

apple, chocolate apple

24 1-octanol fatty, citrus, waxy, woody fatty, woody
25 1-nonanal apple, coconut, fatty, fishy fatty
26 hexyl butanoate green, fruity, apple, waxy fruity, winelike,

apple, fatty
27 p-allylanisole alcohol, green, minty, sweet,

vanilla
sweet, green, floral

28 hexyl 2-methyl
butanoate

green, fruity, apple,
grapefruitlike

green, fruity, apple,
herbaceous

29 hexyl
hexanoate

green, vegetable, fruity,
apple, cucumberlike

green, fruity, fatty

30 (E,E)-α-
farnesene

green, herbaceous

aBoldface type indicates correctly predicted ODs. bThe odor databases
included Flavornet, Sigma−Aldrich, GoodScents, and SuperScent.
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extraction methods (PCA and BR) were used to extract kernel
information from 1006 MPs. Three machine-learning ap-
proaches (SVM, RF, and ELM) were employed to establish
odor descriptor classifier models. The results showed that
models calibrated by SVM presented better accuracies than
others. Although the accuracy of the BR-C SVM model is lower
than those of AP, PCA, and BR-CT SVM models, when the
complexities of the models are considered, BR-C SVM would
be the optimal model in this study. Therefore, BR-C SVM has
good potential in predicting odor perceptions rapidly and
precisely. This study demonstrated that MPs associated with
machine-learning models can be adopted for odor perceptual
senses identification. The research is expected to offer a novel
approach for developing machine-learning-based GC/O.
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